Happy New Year Message in 50+ Languages

Happy New Year Wishes in every language of world - Frened, German, Italian, Gujarati, Chinese, Koren, Irish and more. Learn how o wish happy new year according to different culture, tradition and in local language,
SLIDE1
SLIDE1
        
SLIDE2
SLIDE2
        
SLIDE3
SLIDE3
        
SLIDE4
SLIDE4
        
SLIDE5
SLIDE5
        
SLIDE6
SLIDE6
        
SLIDE7
SLIDE7
        
SLIDE8
SLIDE8
        
SLIDE9
SLIDE9
        
SLIDE10
SLIDE10
        
SLIDE11
SLIDE11
        
SLIDE12
SLIDE12
        
SLIDE13
SLIDE13
        
SLIDE14
SLIDE14
        
SLIDE15
SLIDE15
        
SLIDE16
SLIDE16
        
SLIDE17
SLIDE17
        
SLIDE18
SLIDE18
        
SLIDE19
SLIDE19
        
SLIDE20
SLIDE20
        
SLIDE21
SLIDE21
        
SLIDE22
SLIDE22
        
SLIDE23
SLIDE23
        
SLIDE24
SLIDE24
        
SLIDE25
SLIDE25
        
SLIDE26
SLIDE26
        
SLIDE27
SLIDE27
        
SLIDE28
SLIDE28
        
SLIDE29
SLIDE29
        
SLIDE30
SLIDE30
        
SLIDE31
SLIDE31
        
SLIDE32
SLIDE32
        
SLIDE33
SLIDE33
        
SLIDE34
SLIDE34
        
SLIDE35
SLIDE35
        
SLIDE36
SLIDE36
        
SLIDE37
SLIDE37
        
SLIDE38
SLIDE38
        
SLIDE39
SLIDE39
        
SLIDE40
SLIDE40
        
SLIDE41
SLIDE41
        
SLIDE42
SLIDE42
        
SLIDE43
SLIDE43
        
SLIDE44
SLIDE44
        
SLIDE45
SLIDE45
        
SLIDE46
SLIDE46
        
SLIDE47
SLIDE47
        
SLIDE48
SLIDE48
        
SLIDE49
SLIDE49
        
SLIDE50
SLIDE50
        
SLIDE51
SLIDE51
        
SLIDE52
SLIDE52
        
SLIDE53
SLIDE53
        
SLIDE54
SLIDE54
        
SLIDE55
SLIDE55
        
SLIDE56
SLIDE56
        
SLIDE57
SLIDE57
        
SLIDE58
SLIDE58
        
SLIDE59
SLIDE59
        
SLIDE60
SLIDE60
        
SLIDE61
SLIDE61
        
SLIDE62
SLIDE62
        
SLIDE63
SLIDE63
        
SLIDE64
SLIDE64
        
SLIDE65
SLIDE65
        
SLIDE66
SLIDE66
        
SLIDE67
SLIDE67
        
SLIDE68
SLIDE68
        
SLIDE69
SLIDE69
        
SLIDE70
SLIDE70
        
SLIDE71
SLIDE71
        
SLIDE72
SLIDE72
        
SLIDE73
SLIDE73
        
SLIDE74
SLIDE74
        
SLIDE75
SLIDE75
        
SLIDE76
SLIDE76
        
SLIDE77
SLIDE77
        
SLIDE78
SLIDE78
        
SLIDE79
SLIDE79
        
SLIDE80
SLIDE80
        
SLIDE81
SLIDE81
        
SLIDE82
SLIDE82
        
SLIDE83
SLIDE83
        
SLIDE84
SLIDE84
        
SLIDE85
SLIDE85
        
SLIDE86
SLIDE86
        
SLIDE87
SLIDE87
        
SLIDE88
SLIDE88
        
SLIDE89
SLIDE89
        
SLIDE90
SLIDE90
        
SLIDE91
SLIDE91
        
SLIDE92
SLIDE92
        
SLIDE93
SLIDE93
        
SLIDE94
SLIDE94
        
SLIDE95
SLIDE95
        
SLIDE96
SLIDE96
        
SLIDE97
SLIDE97
        
SLIDE98
SLIDE98
        
SLIDE99
SLIDE99
        
SLIDE100
SLIDE100
        
SLIDE101
SLIDE101
        
SLIDE102
SLIDE102
        
SLIDE103
SLIDE103
        
SLIDE104
SLIDE104
        
SLIDE105
SLIDE105
        
SLIDE106
SLIDE106
        
SLIDE107
SLIDE107
        
SLIDE108
SLIDE108
        
SLIDE109
SLIDE109
        
SLIDE110
SLIDE110
        
SLIDE111
SLIDE111
        
SLIDE112
SLIDE112
        
SLIDE113
SLIDE113
        
SLIDE114
SLIDE114
        
SLIDE115
SLIDE115
        
SLIDE116
SLIDE116
        
SLIDE117
SLIDE117
        
SLIDE118
SLIDE118
        
SLIDE119
SLIDE119
        
SLIDE120
SLIDE120
        
SLIDE121
SLIDE121
        
SLIDE122
SLIDE122
        
SLIDE123
SLIDE123
        
SLIDE124
SLIDE124
        
SLIDE125
SLIDE125
        
SLIDE126
SLIDE126
        
SLIDE127
SLIDE127
        
SLIDE128
SLIDE128
        
SLIDE129
SLIDE129
        
SLIDE130
SLIDE130
        
SLIDE131
SLIDE131
        
SLIDE132
SLIDE132
        
SLIDE133
SLIDE133
        
SLIDE134
SLIDE134
        



How can LLMs be fine-tuned for summarization?
LLMs (Large Language Models) like GPT-3 can be fine-tuned for summarization using the following approaches:
Supervised training - The simplest approach is to fine-tune the LLM using a large dataset of text-summary pairs. The model is trained to generate the corresponding summary given the input text.
This requires a sizable supervised dataset, which can be expensive to create. Public datasets like CNN/DailyMail can be used.

Self-supervised training - The LLM is trained using the original text as input and the first few sentences as the "summary". This creates weak supervision from the data itself.
The model is then fine-tuned on a smaller set of human-written summaries to improve accuracy. This approach requires less labeled data.

Reinforcement learning - The LLM is first trained autoencoding - to reproduce the input text. Then, rewards are given based on the quality and conciseness of the generated summary.
The model learns to generate better summaries through trial-and-error to maximize these rewards. However, this requires defining a good reward function.

Filtering and post-processing - Generated summaries from the LLM can be filtered and refined using techniques like:
• Extracting sentences with the highest similarity to human references • Removing repetitive sentences • Combining overlapping content into a single sentence, etc.
This requires minimal fine-tuning of the base LLM but provides less control over the summary style.

Prompting - The LLM can be "prompted" to generate a summary using natural language instructions. For example:
In 2-3 short paragraphs, summarize the main points of the following text:
This relies more on the pre-trained LLM abilities and requires less labeled data. But accuracy tends to be lower.
So in short, there are a variety of approaches to fine-tune LLMs for summarization - from fully supervised to minimally supervised. The choice depends on the available data, required accuracy and custom need.